Extensions 1→N→G→Q→1 with N=C22×S3 and Q=S3

Direct product G=N×Q with N=C22×S3 and Q=S3
dρLabelID
C22×S3224C2^2xS3^2144,192

Semidirect products G=N:Q with N=C22×S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊S3 = S3×S4φ: S3/C1S3 ⊆ Out C22×S3126+(C2^2xS3):S3144,183
(C22×S3)⋊2S3 = C2×D6⋊S3φ: S3/C3C2 ⊆ Out C22×S348(C2^2xS3):2S3144,150
(C22×S3)⋊3S3 = C2×C3⋊D12φ: S3/C3C2 ⊆ Out C22×S324(C2^2xS3):3S3144,151
(C22×S3)⋊4S3 = S3×C3⋊D4φ: S3/C3C2 ⊆ Out C22×S3244(C2^2xS3):4S3144,153

Non-split extensions G=N.Q with N=C22×S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×S3).S3 = D6⋊Dic3φ: S3/C3C2 ⊆ Out C22×S348(C2^2xS3).S3144,64
(C22×S3).2S3 = C2×S3×Dic3φ: trivial image48(C2^2xS3).2S3144,146

׿
×
𝔽